Controlled Room Temps PCM Panel for Cool Cube™ 03

For 20-24°C/15-25°C Temps (Single PCM Panel)
SKU:
CC-PCMP-R03

A panel containing phase change material (PCM) that is nontoxic & biodegradable. This single panel for the Cool Cube™ 03 provides advanced thermal protection for room temperature product due to a 21.5°C/70.7°F melting point (temperature hold).

$54.00
This product is made to order. Call 866-469-6019 to request an estimated lead time.

Add Accessories

Fridge Temps PCM System for Cool Cube™ 03 (6 Panels)

A set of six panels containing phase change material (PCM) that is nontoxic & biodegradable. These panels for the Cool Cube™ 03 provide advanced thermal protection for refrigerated product due to a 4.5°C/40.1°F melting point (temperature hold).

The Controlled Room Temps PCM Panel for Cool Cube™ 03 (CC-PCMP-R03) is a reusable panel used to create a 15° to 25°C or 20° to 24°C environment within Cool Cube™ 03 models. This phase change material panel is used to manage room temperature product – ideal for FFPE, platelets and biospecimens.

Dimensions & Specs

Outside: 7¼” x 7¼” x 1”
Inside Edge: 6” x 6”
Weight: 1 lb.

have-questions-750x273

Room Temperature Cool Cube™ Prep Methods

All Controlled Room Temps Prep Methods Lab Freezer Prep Options Chart

    *Panels may be stored at this stage indefinitely (for longer than indicated).

old to new stamp - room temp

About Room Temperature PCM (Phase Change Material)

PCM absorbs and releases thermal energy during the process of melting and freezing. When solid PCM melts, it absorbs the heat from the environment, yet its temperature stays at the melting point until totally liquid. Conversely, when liquid PCM freezes, it absorbs the cold from the environment yet stays at its temperature until totally solid. Therefore, PCM an ideal, passive solution for a variety of applications that require temperature control. The most common PCM is water, which has a melting point of 0 °C (32 °F). When solid, ice/water maintains a temperature of 0°C until it turns completely liquid. So, in essence, the 0 °C melting point makes it unsafe for most temperature-sensitive applications.

Cool Cube™ Room Temp PCM has a melting point of 21.5 °C/70.7 °F. When the PCM is solid, a panel helps the Cool Cube™ stay cool (about 22 °C) in hot environments. When the PCM is liquid, a panel helps the Cool Cube™ stay warm (about 21 °C) in cold conditions. It’s right around that 21.5 °C/70.7 °F where a PCM panel’s temperature plateaus for a while during the warming up and/or cooling down processes.

Controlled Room Temps - Prep Method A - Lab Incubator Prep to keep product cool

Prep Method A: Lab Incubator Prep to keep product cool

Panel Prep

2.1 Lay panels flat in a lab incubator (or other 15-20°C environment) until all the PCM (phase change material inside the panel) turns solid. At 15°C/59°F the PCM will solidify in a day or two.*

    * If the incubator temperature is ever warmer than 20°C, panels may not get completely solid (manufacturing tolerances). If stored within the temperature parameters of the product, but are still liquid, panels may be used but the hold time will decrease. Although panels are liquid, the PCM inside is at the temperature of storage environment after 3 hours (i.e. stored in a 22°C incubator, the PCM panels are at 22°C). Assembling the Cool Cube™ with this additional thermal mass will keep product at room temperature, just for a shorter amount of time than the lab-validated results.

Shake PCM Panel To Check

2.2 Shake panels to verify the PCM is solid. If there is liquid, restart at step 2.1 to ensure the longest hold time. Using liquid PCM or panels with a solid/liquid combination decreases the hold time.


Prep Method B - Fridge/Room Prep to keep product cool

Prep Method B: Fridge/Room Prep to keep product cool

Panel Prep

2.1 Lay panels flat in a refrigerator until all the PCM (phase change material inside the panel) turns solid. At 4°C/39°F the PCM will solidify in a couple hours.

2.2 Spread panels out (enable airflow to all sides) in a room just before use to allow the PCM inside to rise to the appropriate operating temperature. Approximate times:

          • “03” size = 35 minutes
          • “08” size = 40 minutes
          • “28” size = 45 minutes
          • “96” size = 50 minutes
              **Times based on a 22°C/72°F room.

Shake PCM Panel To Check

2.3 Shake panels to verify the PCM is solid with just a little liquid. If a little liquid is heard, it is at 21.5°C. If there is a lot of liquid, restart at step 2.1 to ensure the longest hold time. Using liquid PCM or panels with a solid/liquid combination decreases the hold time. Wipe off condensate and proceed with assembly.



Room Temps Prep Method C - Lab Incubator Prep to keep product warm

Prep Method C: Lab Incubator Prep to keep product warm

Panel Prep

2.1 Place panels in a lab incubator 23-24°C for at least 24 hours before use so the PCM (phase change material inside the panel) is liquid.*

    * Panels may be stored in the fridge until needed for assembly or the PCM solidifies. If an incubator maintains 23°C or above, the PCM within the panels will not get solid (the solidifying point is 21.5°C), keeping the PCM liquid indefinitely until pack-out. Liquid panels will protect the product from getting cold until the PCM inside becomes completely solid.

Shake PCM Panel To Check

2.2 Shake panels to verify the PCM is liquid. If they are solid, restart at step 2.1 to

ensure the longest hold time. Liquid PCM panels will prevent the product from getting cold (at room temps) in a cold environment the longest. Using solid PCM or panels with a solid/liquid combination decreases the hold time.


Room Temps Prep Method D - Room Prep to keep product warm

Prep Method D: Room Prep to keep product warm

Panel Prep

2.1 Place panels in a room between 23-24°C for at least 24 hours before use so the PCM (phase change material inside the panel) is liquid.*

    * Panels may be stored in a room until needed for assembly or the PCM solidifies. If a room maintains 23°C or above, the PCM within the panels will not get solid (the solidifying point is 21.5°C), keeping the PCM liquid indefinitely until pack-out. Liquid panels will protect the product from getting cold until the PCM inside becomes completely solid.

Shake PCM Panel To Check

2.2 Shake panels to verify the PCM is liquid. If they are solid, restart at step 2.1 to ensure the longest hold time. Liquid PCM panels will prevent the product from getting cold (at room temps) in a cold environment the longest. Using solid PCM or panels with a solid/liquid combination decreases the hold time.

About Controlled Room Temps PCM Passive Temperature Technology

Thermal Properties of Series 22 PCM Panels

Phase change materials (PCMs) are materials that absorb and release thermal energy during the process of melting and freezing. When a PCM melts, it absorbs the heat from the environment, yet its temperature stays at the melting point until totally liquid. Conversely, when a PCM freezes, it absorbs the cold from the environment, yet stays at its temperature until totally solid. This makes PCM an ideal, passive solution for a variety of applications that require temperature control. The most common PCM is water/ice. Ice is an excellent PCM for maintaining temperatures at 0°C. But water’s freezing point is fixed at 0°C (32°F), which makes it unsuitable for most temperature sensitive applications.

Cool Cube™ PCMs offer custom temperature holds based on their melting point. The PCM inside Controlled Room Temperature panels has a melting point of 21.5°C/70.7°F. When panels are solid, contents within the Cool Cube™ stay at room temperature (around 21.5°C) in hot conditions during an extended period of time. When panels have liquid inside, contents within the Cool Cube™ won’t get cold (again at room temps around 21.5°C) in cold conditions during an extended period of time.

Series 22 PCM - ISTA 7D Thermal Performance Study Temperature Hold Times

Cool Cube™ User Guide

[wpfilebase tag=file id=433/]

Cool-Cube™-with-series-22-PCM-&-Dims

Room Temps Temps Hold Time:

Hold-temps-Series-22 PCM

PCM Panel Prep Steps Sequence

PCM Panel Spacing Customer Solution

      • Always prep the PCM panels before use according to one of the described methods provided by VeriCor.
      • Ensure all components are clean and free of damage.
      • During prep, enable ample air flow around all panel sides (use spacers or racks).
      • Lay panels flat when “freezing”.
      • Freeze/melting times vary depending on number of panels being prepped and equipment specifications being used. Assemble using all six panels for maximum hold time.
      • Using less panels does not change the holding temperature but does decrease hold time.
      • Panels are reusable (10,000+ cycles). (End-of-life disposal: panels use a plastic #2, typically recycled by businesses/communities; PCM is nontoxic and readily biodegradable.)
      • Use a calibrated data logger or other temperature monitoring device to observe internal temperature.
      • Avoid unnecessary opening of the Cool Cube™ after loading payload. Opening of the Cool Cube™ will decrease hold time.
      • An infrared temperature thermometer can assist in ensuring the panels reach a safe pack-out temperature (good for finding out the approximate temperature of each panel).
  • Further the temps are away from the melting point, the quicker PCM will change states.

CLICK & PRINT DOWNLOADS (PDF)

have-questions-plus-number-2

FAQs

Search FAQs


RT-03 Specific FAQ

The RT-03 when properly conditioned will hold product between 20-24°C for 47+ hours.
  1. Store panels in a lab incubator* between 15-20°C so PCM is solid (i.e. 24 hrs. @ 15°C). Shake to verify.
  2. Before assembly, shake panels to verify PCM is solid. If liquid is heard, restart at step 2a to ensure longest hold time. Using liquid panels, or panels with a solid/liquid combination, deceases hold time.
* If the incubator temperature is ever warmer than 21°C, panels may not get completely solid (manufacturing tolerances). If stored within the temperature parameters of the product, but are still liquid, panels may be used but thehold time will decrease.
Space out panels for good air flow; if stacking, insert a spacer (pencil, tongue depressor, etc.) between each.

The time varies between prep methods:

  • Method A: ≈ 3 hours / Keep product cool (in extreme heat)
  • Method B: ≈ 4 hours / Keep product cool (in extreme heat)
  • Method C: ≈ 3 hours / Keep product warm (in cold conditions)
  • Method D: ≈ 3 hours / Keep product warm (in cold conditions)

In the user guide we recommend Method A, although all methods work. Choose the method that works best for your needs, with your schedule and available resources.

Prep Method A:

  1. Store panels in a lab incubator* between 15-20°C so PCM is solid (i.e. 24 hrs. @ 15°C). Shake to verify.
  2. Before assembly, shake panels to verify PCM is solid. If liquid is heard, restart at step 2a to ensure longest hold time. Using liquid panels, or panels with a solid/liquid combination, deceases hold time.
* If the incubator temperature is ever warmer than 21°C, panels may not get completely solid (manufacturing tolerances). If stored within the temperature parameters of the product, but are still liquid, panels may be used but thehold time will decrease.
Click here for a detailed guide to all of the prep methods.
For storage of items outside the case (monitor, paperwork, pens, etc.).

Room Temperatures Specific Cool Cubes™

The PCM inside is NOT below its phase change temperature of 21.5°C/70.7°F. Make sure that the storage temperature is always below 20°C/68°F.

General Cool Cube™

Components

Yes. All components are available for purchase. Click Here
All components are available for purchase.
A plastic panel filled with phase change material. Each Cool Cube™ comes with 6 PCM panels that make up the PCM System.
The VIP (Vacuum Insulation Panel) System consists of 6 panels that form an insulation barrier for the Cool Cube™. Each panel is a specially formed rigid foam board, shrink wrapped, encased in a metallic plastic film, and sealed under vacuum.
Phase Change Material – a substance with a high heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing large amounts of energy.
Vacuum Insulation Panel – a form of thermal insulation consisting of a gas-tight enclosure surrounding a rigid core, from which the air has been evacuated.

Conditioning

The PCM inside is NOT below its phase change temperature of 21.5°C/70.7°F. Make sure that the storage temperature is always below 20°C/68°F.
The PCM inside is NOT below its phase change temperature of 4.5°C/40.1°F. Make sure that the storage temperature is always below 4°C/39.2°F.
The PCM inside is NOT below its phase change temperature of -21.5°C/-6.7°F. Make sure that the freezer temperature is always below -23°C/-9.4°F.
Yes, for Cool Cubes™ at Fridge Temps. However, before pack-out, the panels must sit out and warm up until they “sweat” so that they don’t make the cooler too cold.
Yes, for Cool Cubes™ at Fridge Temps. Make sure the refrigerator temperature is below 4°C to ensure panels turn solid (the closer the fridge is to 4.5°C, the longer it will take to turn solid).
Yes, but to get the panels truly hard, the freezer must maintain a temperature lower than -30°C. Otherwise, the panel will be at the temperature of the freezer (in a liquid state) and just won’t last as long.
Yes, but they will just take longer to condition (the middle panel will be the last to condition). For the quickest conditioning process, get as much air circulating around the panel as possible.
If the panels must be stacked we recommend inserting a spacer (pencil, tongue depressor, etc.) between each panel.
No, but the PCM panels need to be prepped.
The PCM inside is above its phase change temperature.
No. It is not necessary to condition the vacuum insulated panel (VIP) system. Storage at room temperature is recommended.

Maintenance

With the two smaller models the fabric case can be hand-washed and air-dried. With the hard-sided models the case can be wiped down.

Pack Out

Vacuum Insulation Panel – a form of thermal insulation consisting of a gas-tight enclosure surrounding a rigid core, from which the air has been evacuated.
No, but all six panels will maintain a consistent temperature the longest. The fewer the panels, the shorter the temperature holding time.
No. The PCM panels are replacements superior to the standard gel pack method of cooling.
No. The PCM panels are replacements superior to the standard ice pack method of cooling.
Not during use. But during storage/conditioning, electricity may be needed to maintain condition the panels properly.
Yes. The large cooler can be locked with a small, steel padlock. The small and medium coolers have double zippers that can be fastened together with a small, cable padlock.
Yes, if they have the same temperature parameters. No, if they require two different parameters.
Yes, just not at the same time. Temperature controlling panels (the PCM System) can be purchased separately and swapped out depending on use.
No. Although it is recommended to have a thermometer to monitor the temperature and some filler material (newspaper, bubble-wrap, etc.) to prevent contents from shifting.
The “series” and color codes are: Series 4 (blue tab) maintains a refrigerated temperature. Series 20M (black tab) maintains a frozen temperature. Series 22 (tan tab) maintains a room temperature.


Purchasing Related FAQs

Credit Cards

Yes, all major credit cards are accepted.

Ordering

Order thru the shopping cart on this website, GSA, Amazon or contact us for a formal quote or Purchase Order. For orders over $10,000 please contact us (866-469-6019).

Pricing

Yes. Discounts start at 10 or more of the same model.

Shipping

Usually 1 to 2 business days depending on stock.
Taxes: United States & Canada
  • Calculated based on delivery location.
  • If $0.00 (Sales tax not collected) is apparent, either VeriCor doesn’t collect sales tax for that state or the order is identified as tax-exempt.
  • If tax-exempt, a valid tax exemption certificate is needed to process the order.
Brokerage: the fee associated with customs clearance for your inbound shipments.
  • Paid by the “Importer of Record” (customer) based on the value of the shipment to the designated broker.
  • Broker can be identified by the customer prior to shipment (so they use their own), otherwise FedEx will be the default broker.
  • There are ways to avoid broker fees, but there’s time and work involved (example).
More in-depth resources:


You may also like…